Thursday, July 25, 2013

Nose Gear Failure on Landing

Southwest Airlines flight 345 suffered a failure of its nose gear upon landing on LaGuardia's runway 4. The aircraft skidded to a halt and was evacuated with only minor injuries. NTSB photos show the nose gear which normally folds forwards on retraction into the nose gear bay had collapsed rearward.

The NTSB is investigating the cause of this incident and will determine if the landing was within normal parameters or not, and whether or not the nose gear suffered structural failure due to a defect.

Available audio tape of the radio transmissions indicate that the aircraft had accepted a clearance for an ILS approach. As opposed to a visual approach, an ILS approach must be flown with reference to an electronic signal which should preclude a steep or unstabilized approach. An unstabilized approach is generally one of the contributing factors to a firm landing, though a firm landing alone should not cause the failure of gear components. Even a very firm landing as experienced within the aircraft is usually well within the design tolerance of most airliners.

During a normal landing on an aircraft with tricycle gear, such as this 737 has, the main gear touch down first, followed by the nose gear as the aircraft decelerates. The NTSB has posted on it's website that video and other evidence indicate the aircraft may have touched down on its nose gear first. A nose gear first landing is highly unusual and could contribute to a failure of the landing gear. The NTSB has also tweeted on it's site that the aircraft pitch was a negative three degrees at touchdown which would be consistent with a nose gear first landing.

The aircraft was landing with the maximum flap setting of 40 which generally means the aircraft will fly at a lower pitch angle than with a lesser flap setting. A maximum flap setting for landing is recommended for landing on short runways, as it results in a lower approach airspeed and less kinetic energy to stop. Also of note is that runway 4 at LaGuardia is a relatively short runway with only 7000 feet of pavement available followed by an overrun and water.

When landing on a short runway, pilots must land by necessity in the first thousand feet or so of the landing zone and do not have the option of "floating" the aircraft in search of a smooth touchdown as might be possible on a longer runway. Should the landing not set up quite right, there is very little room for correction and the choices would be to either accept a firm touch down or to go around.

The investigation will undoubtedly uncover the exact cause of this incident, though if it is determined that the nose gear touched down first, these pilots will have some 'splainin to do. Stay tuned.

Friday, July 12, 2013

You Just Can't Make This Stuff Up!

We are continually astounded at the ever expanding depths of stupidity plumbed by the media when it comes to reporting on aviation. Most of it is simply moronic speculation by talking heads who haven't the slightest idea of what they're talking about. For instance we heard one on NPR this morning explaining that the displaced threshold may have made the accident less severe. The theory being that the pilots were somehow flying their aircraft in relation to the runway they saw out the front windscreen and since the runway was displaced, they hit later than they would have otherwise. Brilliant.

What would have made the accident less severe in our estimation would have been if Asiana had actually staffed it's widebody aircraft with real pilots who actually knew how to fly an airplane.

It is amusing to watch complete imbeciles pontificate on some technical reason or another why a crew would fly a perfectly good airplane into the dirt on a calm and clear day. But don't let us stop the fun. Please proceed.

But today we were directed to what must be the most hilarious and ridiculous example ever to make a TV screen. You really just can't make this stuff up but have to see it for yourself:

An Eyewitness Account

Here is an email from a United crew holding short of the runway as the Asiana B-777 approached:

On July 6, 2013 at approximately 1827Z I was the 747-400 relief F/O on flt 885, ID326/06 SFO-KIX. I was a witness to the Asiana Flt 214 accident. We had taxied to hold short of runway 28L at SFO on taxiway F, and were waiting to rectify a HAZMAT cargo issue as well as our final weights before we could run our before takeoff checklist and depart. As we waited on taxiway F heading East, just prior to the perpendicular holding area, all three pilots took notice of the Asiana 777 on short final. I noticed the aircraft looked low on glidepath and had a very high deck angle compared to what seemed “normal”. I then noticed at the apparent descent rate and closure to the runway environment the aircraft looked as though it was going to impact the approach lights mounted on piers in the SF Bay. The aircraft made a fairly drastic looking pull up in the last few feet and it appeared and sounded as if they had applied maximum thrust. However the descent path they were on continued and the thrust applied didn't appear to come soon enough to prevent impact. The tail cone and empennage of the 777 impacted the bulkhead seawall and departed the airplane and the main landing gear sheared off instantly. This created a long debris field along the arrival end of 28L, mostly along the right side of 28L. We saw the fuselage, largely intact, slide down the runway and out of view of our cockpit. We heard much confusion and quick instructions from SFO Tower and a few moments later heard an aircraft go around over the runway 28 complex. We realized within a few moments that we were apparently unharmed so I got on the PA and instructed everyone to remain seated and that we were safe.

We all acknowledged if we had been located between Runways 28R and 28L on taxiway F we would have likely suffered damage to the right side aft section of our aircraft from the 777.

Approximately two minutes later I was looking out the left side cockpit windows and noticed movement on the right side of Runway 28L. Two survivors were stumbling but moving abeam the Runway “28L” marking on the North side of the runway. I saw one survivor stand up, walk a few feet, then appear to squat down. The other appeared to be a woman and was walking, then fell off to her side and remained on the ground until rescue personnel arrived. The Captain was on the radio and I told him to tell tower what I had seen, but I ended up taking the microphone instead of relaying through him. I told SFO tower that there appeared to be survivors on the right side of the runway and they needed to send assistance immediately. It seemed to take a very long time for vehicles and assistance to arrive for these victims. The survivors I saw were approximately 1000-1500' away from the fuselage and had apparently been ejected from the fuselage.

We made numerous PAs to the passengers telling them any information we had, which we acknowledged was going to change rapidly, and I left the cockpit to check on the flight attendants and the overall mood of the passengers, as I was the third pilot and not in a control seat. A couple of our flight attendants were shaken up but ALL were doing an outstanding and extremely professional job of handling the passenger's needs and providing calm comfort to them. One of the flight attendants contacted unaccompanied minors' parents to ensure them their children were safe and would be taken care of by our crew. Their demeanor and professionalism during this horrific event was noteworthy. I went to each cabin and spoke to the passengers asking if everyone was OK and if they needed any assistance, and gave them information personally, to include telling them what I saw from the cockpit. I also provided encouragement that we would be OK, we'd tell them everything we learn and to please relax and be patient and expect this is going to be a long wait. The passenger mood was concerned but generally calm. A few individuals were emotional as nearly every passenger on the left side of the aircraft saw the fuselage and debris field going over 100 knots past our aircraft only 300' away. By this point everyone had looked out the windows and could see the smoke plume from the 777. A number of passengers also noticed what I had seen with the survivors out near the end of 28L expressing concern that the rescue effort appeared slow for those individuals that had been separated from the airplane wreckage.

We ultimately had a tug come out and tow us back to the gate, doing a 3 point turn in the hold short area of 28L. We were towed to gate 101 where the passengers deplaned.

Wednesday, July 10, 2013

Draw Your Own Conclusions

It is of course quite politically incorrect to suggest that one particular culture has features which might somehow be thought of as inferior to another, but unfortunately science tells us otherwise name calling notwithstanding. Not wishing to make this blog a discourse on HBD, we shall simply offer an account by a fellow aviator in regards to Korean culture and aviation:

After I retired from UAL as a Standards Captain on the -400, I got a job as a simulator instructor working for Alteon (a Boeing subsidiary) at Asiana. When I first got there, I was shocked and surprised by the lack of basic piloting skills shown by most of the pilots. It is not a normal situation with normal progression from new hire, right seat, left seat taking a decade or two. One big difference is that ex-Military pilots are given super-seniority and progress to the left seat much faster. Compared to the US, they also upgrade fairly rapidly because of the phenomenal growth by all Asian air carriers. By the way, after about six months at Asiana, I was moved over to KAL and found them to be identical. The only difference was the color of the uniforms and airplanes. I worked in Korea for 5 long years and although I found most of the people to be very pleasant, it's a minefield of a work environment ... for them and for us expats.

One of the first things I learned was that the pilots kept a web-site and reported on every training session. I don't think this was officially sanctioned by the company, but after one or two simulator periods, a database was building on me (and everyone else) that told them exactly how I ran the sessions, what to expect on checks, and what to look out for. For example; I used to open an aft cargo door at 100 knots to get them to initiate an RTO and I would brief them on it during the briefing. This was on the B-737 NG and many of the captains were coming off the 777 or B744 and they were used to the Master Caution System being inhibited at 80 kts. Well, for the first few days after I started that, EVERYONE rejected the takeoff. Then, all of a sudden they all "got it" and continued the takeoff (in accordance with their manuals). The word had gotten out. I figured it was an overall PLUS for the training program.

We expat instructors were forced upon them after the amount of fatal accidents (most of the them totally avoidable) over a decade began to be noticed by the outside world. They were basically given an ultimatum by the FAA, Transport Canada, and the EU to totally rebuild and rethink their training program or face being banned from the skies all over the world. They hired Boeing and Airbus to staff the training centers. KAL has one center and Asiana has another. When I was there (2003-2008) we had about 60 expats conducting training KAL and about 40 at Asiana. Most instructors were from the USA, Canada, Australia, or New Zealand with a few stuffed in from Europe and Asia. Boeing also operated training centers in Singapore and China so they did hire some instructors from there.

This solution has only been partially successful but still faces ingrained resistance from the Koreans. I lost track of the number of highly qualified instructors I worked with who were fired because they tried to enforce "normal" standards of performance. By normal standards, I would include being able to master basic tasks like successfully shoot a visual approach with 10 kt crosswind and the weather CAVOK.  I am not kidding when I tell you that requiring them to shoot a visual approach struck fear in their hearts ... with good reason.  Like this Asiana crew, it didnt' compute that you needed to be a 1000' AGL at 3 miles and your sink rate should be 600-800 Ft/Min. But, after 5 years, they finally nailed me. I still had to sign my name to their training and sometimes if I just couldn't pass someone on a check, I had no choice but to fail them. I usually busted about 3-5 crews a year and the resistance against me built. I finally failed an extremely incompetent crew and it turned out he was the a high-ranking captain who was the Chief Line Check pilot on the fleet I was teaching on. I found out on my next monthly trip home that KAL was not going to renew my Visa. The crew I failed was given another check and continued a fly while talking about how unfair Captain Brown was.

Any of you Boeing glass-cockpit guys will know what I mean when I describe these events. I gave them a VOR approach with an 15 mile arc from the IAF. By the way, KAL dictated the profiles for all sessions and we just administered them. He requested two turns in holding at the IAF to get set up for the approach.  When he finally got his nerve up, he requested "Radar Vectors" to final. He could have just said he was ready for the approach and I would have cleared him to the IAF and then "Cleared for the approach" and he could have selected "Exit Hold" and been on his way. He was already in LNAV/VNAV PATH. So, I gave him vectors to final with a 30 degree intercept. Of course, he failed to "Extend the FAF" and he couldn't understand why it would not intercept the LNAV magenta line when he punched LNAV and VNAV. He made three approaches and missed approaches before he figured out that his active waypoint was "Hold at XYZ."  Every time he punched LNAV, it would try to go back to the IAF ... just like it was supposed to do. Since it was a check, I was not allowed (by their own rules) to offer him any help. That was just one of about half dozen major errors I documented in his UNSAT paperwork. He also failed to put in ANY aileron on takeoff with a 30-knot direct crosswind (again, the weather was dictated by KAL).

This Asiana SFO accident makes me sick and while I am surprised there are not more, I expect that there will be many more of the same type accidents in the future unless some drastic steps are taken. They are already required to hire a certain percentage of expats to try to ingrain more flying expertise in them, but more likely, they will eventually be fired too. One of the best trainees I ever had was a Korean/American (he grew up and went to school in the USA) who flew C-141's in the USAF. When he got out, he moved back to Korea and got hired by KAL. I met him when I gave him some training and a check on the B-737 and of course, he breezed through the training. I give him annual PCs for a few years and he was always a good pilot. Then, he got involved with trying to start a pilots union and when they tired to enforce some sort of duty rigs on international flights, he was fired after being arrested and JAILED!

The Koreans are very very bright and smart so I was puzzled by their inability to fly an airplane well. They would show up on Day 1 of training (an hour before the scheduled briefing time, in a 3-piece suit, and shined shoes) with the entire contents of the FCOM and Flight Manual totally memorized. But, putting that information to actual use was many times impossible. Crosswind landings are also an unsolvable puzzle for most of them. I never did figure it out completely, but I think I did uncover a few clues. Here is my best guess. First off, their educational system emphasizes ROTE memorization from the first day of school as little kids. As you know, that is the lowest form of learning and they act like robots. They are also taught to NEVER challenge authority and in spite of the flight training heavily emphasizing CRM/CLR, it still exists either on the surface or very subtly. You just can't change 3000 years of culture.

The other thing that I think plays an important role is the fact that there is virtually NO civil aircraft flying in Korea. It's actually illegal to own a Cessna-152 and just go learn to fly. Ultra-lights and Powered Hang Gliders are Ok. I guess they don't trust the people to not start WW III by flying 35 miles north of Inchon into North Korea.  But, they don't get the kids who grew up flying (and thinking for themselves) and hanging around airports. They do recruit some kids from college and send then to the US or Australia and get them their tickets. Generally, I had better experience with them than with the ex-Military pilots. This was a surprise to me as I spent years as a Naval Aviator flying fighters after getting my private in light airplanes. I would get experienced F-4, F-5, F-15, and F-16 pilots who were actually terrible pilots if they had to hand fly the airplane. What a shock!

Finally, I'll get off my box and talk about the total flight hours they claim. I do accept that there are a few talented and free-thinking pilots that I met and trained in Korea. Some are still in contact and I consider them friends. They were a joy! But, they were few and far between and certainly not the norm.

Actually, this is a worldwide problem involving automation and the auto-flight concept. Take one of these new first officers that got his ratings in the US or Australia and came to KAL or Asiana with 225 flight hours. After takeoff, in accordance with their SOP, he calls for the autopilot to be engaged at 250' after takeoff. How much actual flight time is that? Hardly one minute. Then he might fly for hours on the autopilot and finally disengage it (MAYBE?) below 800' after the gear was down, flaps extended and on airspeed (autothrottle). Then he might bring it in to land. Again, how much real "flight time" or real experience did he get. Minutes! Of course, on the 777 or 747, it's the same only they get more inflated logbooks.

So, when I hear that a 10,000 hour Korean captain was vectored in for a 17-mile final and cleared for a visual approach in CAVOK weather, it raises the hair on the back of my neck.


Monday, July 08, 2013

No Pilots Aboard Today

We turned on the telly Saturday to see the burning wreckage of this Asiana Boeing 777 which crashed while landing on San Francisco International's runway 28L (and for the benefit of the many talking heads in the so-called newsrooms who consistently get it wrong, it's pronounced "two-eight-left" not twentyeight left). Thankfully the casualties were not worse than they were with the only tragic fatalities being two teenaged girls who we are now hearing reports of might have been hit by emergency vehicles. It could've been much worse as the aircraft may have had as much as 15,000 lbs of fuel still aboard upon landing, a normal amount of reserve fuel.

To any trained pilot, the primary cause of the crash was immediately apparent; the aircraft had obviously landed well short of the runway. The video reporting clearly showed the debris field starting at the water's edge and the trail leading to the burned fuselage showed landing gear, horizontal and vertical stabilizers all having departed the main portion of the aircraft. Even visible was an aircraft part apparently still in the water.

This initial conjecture was confirmed several days later with the release of this video taken by a bystander which clearly shows the aircraft well below a normal glide slope hitting the jetty and bursting into flame. The only question that remained is what caused this aircraft to land so short?

Aircraft accident investigations are by their nature slow, plodding, drawn out affairs. The investigators must take their time to account for every possible aspect which may have been a primary or contributing cause of an accident to include such mundane details as what the pilots had for breakfast, or the brand of grease used on the aircraft (a factor in an Alaskan airlines crash years ago). Investigators will go to Herculean efforts to retrieve the voice and data recorders and to reconstruct the aircraft to determine the most likely cause of an accident. It's as much art as science with entire schools run by military and civilian safety agencies devoted to the discipline.

This case may well be different. The pilots are alive, the recorders are intact, the wreckage is readily accessible, and the accident itself was caught on video. This is simply an investigator's dream case. The investigation has already ruled out possible terrorist activity, and the likelihood of a mechanical difficulty seems highly improbable. A British Airways B777 landed short of it's intended runway several years ago due to a fuel icing problem affecting both engines simultaneously, though that problem has been addressed. That aircraft employed Rolls Royce engines while this aircraft was equipped with Pratt & Whitney engines making a similar malfunction very unlikely.

What is left then, is the control of the aircraft by the pilots. One of the most basic skills learned by any pilot from their first days in any aircraft is how to fly a visual approach to a runway. It's quite simply the bread and butter of all piloting skills. What the pilot has in front of him is a small strip of pavement upon which he must place his aircraft after having flown a stabilized approach. By stabilized approach, we mean one that approaches the runway at a constant angle, usually three degrees in slope and at a constant airspeed. This means that at about three miles from the runway, the aircraft will be about 1000 ft above the runway elevation. We can still hear our primary flight instructor repeating "aimpoint, airspeed" while in Air Force undergraduate pilot training over three decades ago.

We were later in our career, a military flight instructor ourselves, repeating the same "aimpoint, airspeed" mantra to our own students. Common rookie errors made by beginning students would be things like channelizing on one particular aspect of the approach to the neglect of others. For instance, a student might be doing a great job controlling airspeed but allowing the aircraft to sink below its optimum glidepath. Or another might be right on glidepath but allowing their airspeed to decay below a safe point. The one most deadly sin which every beginning pilot has drilled into his or her skull is to never become "low and slow" on approach. This is important for the simple reason that the "low" part takes you closer to the dirt you don't want to hit, and the "slow" part takes the aircraft closer to a stall where the wing quits flying. Even being a little slower than normal approach speed makes an aircraft sluggish to fly. Together they can kill.

Another integral part of being a pilot is known as the "crosscheck" or feedback loop. No pilot ever flies a completely perfect approach. Rather, the pilot makes control inputs, the aircraft will respond to those inputs which the pilot will either see visually or on the instruments, and then correct. This feedback loop continues on an approach all the way to touchdown with innumerable observations and corrections being made constantly. The skill to be learned by rookie pilots is recognizing deviations before they become large and making appropriate corrections. As an analogy, when driving down the road, few drivers are conscious of the many small inputs they make on the steering wheel, they just make them before the tires go over the yellow line. A pilot does the same thing but only in three dimensions.

We apologize for spending the last few paragraphs detailing the basics of flying an approach, but we believe it's important to understand the mechanics of how an approach should be flown on a clear and calm day. These principles are virtually the same for every aircraft in the sky regardless of its vintage or sophistication. Pilots need to either fly the aircraft, or ensure that the autopilot is flying the aircraft using these principles to be considered competent professionals.

We've recounted the basic skills needed to fly a visual approach that all pilots should possess, but would now like to explore the conditions this crew encountered on their approach. It has been reported that part of the electronic landing system and also the visual approach lighting system on San Francisco's runway 28L were inoperative Saturday. It's likely much hay will be made out of this fact, but this is a canard as we'll explain. The specific electronic equipment which was inoperative was the electronic glideslope part of the ILS system. This is a directional radio signal which the aircraft receives and displays to the pilot where the aircraft is relative to a three degree glideslope. It is primarily used for landing in instrument conditions, i.e. when the runway can't be seen.

In addition to the the inoperative glideslope, the PAPI or "precision approach path indicator" was also inoperative. This system is a simple array of spotlights behind baffles which indicate either white or red to indicate to pilots their position on the glideslope. The reason for both of these outages is apparently due to some ongoing construction on the runway which necessitated a "displaced threshold" or simply the end of the runway being officially displaced down the pavement a certain distance. The runway is then marked with a new runway threshold by paint. Since the existing systems were calibrated for the original runway threshold, they were deactivated as they would not have been accurate for the displaced one. This is not an uncommon occurrence.

Both of these outages were published in the Notams or "notices to airmen" which detail all pertinent information needed by pilots for landing at any airport. Pilots are expected to review the notams for every leg they fly so this outage should have been known by the Asiana crew even though with the weather being clear, it should not have made any impact on the flight. Our point, though, is that none of it should have been needed for a routine visual approach, especially when the crew had prior knowledge. The 777 can even generate its own internal glidepath for display to the pilots had they wished to set it up.

 We will admit that while flying an approach with no PAPI or electronic glideslope is an annoyance, it is not any cause for alarm. One must simply pay closer attention to the visual cues that are available. When the runway is in sight, pilots are expected to use the appearance of the runway to determine whether they are high or low on the glidepath.

The next bit of information to reach the public is that the pilot flying the aircraft that day had only 43 hours in that type aircraft and that this flight was his first trip to this airport in a 777. While this sounds like it may be the smoking gun, we have cause for doubt. This pilot was a veteran with over 10,000 hours including the 747. Having low hours in type is a routine practice today as modern flight simulators are as realistic as the aircraft. In almost all cases, a pilot's first actual flight in a new aircraft will be on a revenue flight with passengers. There are seldom, if ever "training flights" any more.

Having ourselves flown jumbo aircraft, we know being low on glidepath is more critical on larger aircraft for the reason that the pilot sits well in front of the gear. On a 777-200, the pilot is more than 90 ft in front of the main landing gear. During approach, being even slightly low on glidepath can cause a short landing. It is highly unlikely that these pilots didn't know that being low on approach is problematic but in any event, being slightly low would generally mean getting the tires scuffed up from being drug through the overrun, not a grossly short landing as in this case. The normal touchdown zone for airliners is 1000-3000 ft beyond the threshold. This aircraft hit the jetty which appears to be over 2000 ft short of the threshold, nearly half a mile short of where it should have touched down.

The way this seems to be shaking out is one of two scenarios. Reports indicate that the inexperienced pilot was in the left seat which may mean that the pilot in the right seat was either an instructor or line copilot. If it turns out that the right seater was an instructor, he clearly let his charge get the aircraft well outside of acceptable parameters and beyond his ability to salvage the approach. This is a double failure: the student made a rookie error, and the instructor allowed it, if this was the actual scenario.  Instructors need to not only know how to teach but to let minor deviations occur so the student can learn but never to allow the situation to progress beyond their ability to recover.

In the second possible scenario, the line copilot observed the captain allow a major deviation to occur and said nothing until it was too late. One of the tenets of crew aircraft piloting, is that the crew functions as a unit, and a deviation left uncorrected by the non-flying pilot will be as serious an offense against the non-flying pilot as if he had made the error himself. Non-flying, or monitoring pilots are as equally responsible as flying ones. Here's where the question of culture possibly enters in.

It has been well documented that a hierarchical culture can prevent or interfere with the necessary intervention from a subordinate in a safety sensitive situation. In such a culture, deference to authority and age are held in very high esteem. Korean national crewed airlines in particular have had a string of accidents attributed in part to this phenomenon. Whether or not this is the case here has yet to be determined by crew interviews and analysis of cockpit communications. A concerted effort was made on the part of Korean safety agencies back in the 1980s to address this problem by introducing training and methods known as crew resource management.

We've written previously how automation is slowly allowing hands-on piloting skills to whither. The scariest thought about this accident is that apparently without the routine electronic guidance that these pilots were used to seeing, they made gross errors of airmanship, and the monitoring pilot either did not see the error or was somehow inhibited from correcting it until it was too late. We realize it may seem harsh to criticize the pilots when the official investigation has hardly started, yet it is hard for us to imagine any other cause for flying a perfectly good jet into the ground. Should mitigating evidence appear such as a mechanical problem, we will be the first to offer a retraction. Whatever the underlying cause, though, a gross deviation was allowed to occur and left uncorrected on a clear day with calm winds in a state of the art aircraft.